HOW HAS BURNED VEGETATION BEEN RECOVERING?

ASSESSING POST-FIRE RECOVERY USING REMOTE-SENSING PRODUCTS AND DYNAMIC GLOBAL VEGETATION MODELS

TIAGO ERMITÃO CÉLIA GOUVEIA, ANA RUSSO, ANA BASTOS

Ciências ULisboa

Fundação

UNIVERSITÄT LEIPZIG

Under review for Global Change Biology Journal

RECOVERY FOLLOWING RECURRENT FIRES ACROSS MEDITERRANEAN ECOSYSTEMS

Tiago Ermitão^{1,2}, Célia Gouveia^{1,2}, Ana Bastos^{3,4} and Ana Russo^{1,5}

1 Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

2 Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal

3 Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany

4 Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, 04103 Leipzig, Germany

5 CEF - Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal

Develop a framework based on **time-series** of the Enhanced Vegetation Index (EVI) rather than using space-for-time substitution approach, to evaluate how vegetation recovery is modulated by fire severity, pre-fire state of vegetation and by post-fire meteorological conditions across the **Mediterranean biome worldwide**.

TASK 2

Work in progress...

IMPROVINGTHEESTIMATIONOFGLOBALCARBONBUDGETSBYPRESCRIBINGREMOTELY-SENSEDBURNED AREAS ON DGVMs

Tiago Ermitão^{1,2}, Ana Bastos^{3,4}, Célia Gouveia^{1,2}, Ana Russo^{1,5} & RECCAP2 team

1 Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

2 Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal
3 Max Planck Institute for Biogeochemistry, Department of
Biogeochemical Integration, 07745 Jena, Germany

- 4 Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, 04103 Leipzig, Germany
- 5 CEF Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal

We test the feasibility of a hybrid process-based between DGVMs and EO-driven near-real time attribution framework, where **models** are constrained by EO data on **burned area from ESA CCI product**, and ERA5 reanalysis climate forcing, aiming to deliver improved updates of human and natural carbon fluxes and biomass change (fFire, Above Ground Carbon, AGC, Leaf Area, LAI and GPP) on global scale.

RECOVERY RATE

FIRE SEVERITY & PRE-FIRE CONDITION

CLIMATE

RECOVERY RATE

FIRE SEVERITY & PRE-FIRE CONDITION

CLIMATE

 $b_1 > b_2$

BROADLEAVED									$b_1 < b_2$									- 1	b 1 >	, p	
a _{REL}	-2.0-	35	295	393	293	238	161	110	81	59		21	289	270	291	308	185	142	126	91	
		14	208	307	483	557	485	477	341	301		20	235	352	517	603	558	464	430	345	
	-6.0 -	0	15	54	64	107	93	84	77	53		0	11	38	39	65	64	102	77	47	
		0	0	2	5	20	38	20	4	5		0	0	4	9	8	1	6	2	1	
	-10.0	0	0	0	0	1	2	6	2	0		0	0	0	0	2	0	0	0	0	
	-10.0	NE	EDL	ELE	EAV	ED	I						1		I		I		1		
a _{REL}	-2.0-	30	186	132	103	133	86	15	2	0		22	179	112	118	65	34	25	10	2	
		25	534	579	498	250	103	22	13	10		39	533	631	453	263	158	89	29	9	
	-6.0	0	158	537	408	283	168	66	20	6		0	36	356	471	314	193	96	47	19	
		0	13	49	88	61	29	29	11	9		0	0	37	98	86	54	34	15	2	
	10.0	0	0	2	7	4	0	3	1	0		0	0	0	6	12	7	6	2	0	
	-10.0-	SH	RUE	BLA	ND		I						1		I				r		
a _{REL}	-2.0-	68	861	966	747	582	315	137	64	36		62	9 43	911	670	608	483	284	159	76	
		33	441	625	568	392	228	97	58	23		25	369	296	271	327	293	181	107	83	
	-6.0-	0	23	80	111	49	26	13	7	3		1	7	27	33	38	29	14	10	3	
		0	0	6	11	18	4	5	0	0		0	0	0	8	8	6	2	7	1	
		0	0	0	0	1	1	0	0	0		0	0	0	0	0	0	0	0	0	
	-10.0 -	TR	ANS	іті	ON/		NO	ODI		D			1		I		,		,		
a _{REL}	-2.0 -	37	195	125	95	72	33	11	5	5		31	387	243	194	128	97	52	29	19	
		29	491	597	448	318	172	73	46	10	· ·	17	280	347	318	221	145	74	34	9	
	-6.0	0	113	292	346	210	130	35	13	7		2	50	219	241	192	117	103	49	32	
		0	4	34	40	36	34	14	8	4		0	0	53	122	80	63	41	29	6	
	-10.0 -	0	0	0	2	0	4	3	1	1		0	0	0	2	3	8	5	10	5	
		0.	02	0.	06	0.	10	0.	14	0.	18 ·	0.	02	0.	06	0.	10	0.	14	0	
	b [month ⁻¹]											b [month ⁻¹]									
								-0.0)6	_	0.04	1	-0	.02							
									y(t)	PRE –	FIRE	[mo	nth ⁻	·1]							

0.18

RECOVERY RATE

FIRE SEVERITY & PRE-FIRE CONDITION

CLIMATE

SLOWER RECOVERY RATES

FIRE EMISSIONS

LAI

ORCHIDEE-MICT_{DIAG}

Ó

1

0

-1

OCN_{PROG} – DIAG

LAI

ORCHIDEE-MICT_{PROG} (MODIS)

ORCHIDEE-MICT_{DIAG} (MODIS)

OCN PROG - DIAG

ORCHIDEE-MICT_{PROG} - DIAG

ORCHIDEE-MICT_{PROG} (GLASS)

ORCHIDEE-MICT_{DIAG} (GLASS)

10

FINAL REMARKS

- Vegetation tends to recover faster after the second event than the first event, although large contrasts between recovery rates are explained by regional differences in vegetation-type, as well as fire severity and post-fire climate conditions.
- Recovery rates dependent on fire severity, especially for higher severity values.
- High levels of pre-fire greenness can promote extreme fire severity, due to fuel/biomass availability to burn.
- Precipitation availability, associated with normal to above-mean temperatures in the growing season, seems to favour vegetation greenness recovery.

FINAL REMARKS

- Prescribing BA from FIRECCI can **improve** the bias, the interannual variability, and the spatial distribution of fire emissions.
- Moderate improvements in the spatio-temporal variability of AGC, LAI, and GPP when prescribing BA, possibly due to factors such as limitations in the protocol, short common period of analysis among DGVMs and EO-based datasets, or unrealistic recovery dynamics by DGVMs.

THANK YOU

